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Various procedures of coarse graining in quantum mechanics and their relation- 
ships are reviewed. A recently developed notion of relative coarse graining is 
described which is based on a certain type of classical embedding of quantum 
states. The ensuing structure of the set of quantum observables is studied. As an 
application of the new concept an operational classical limit procedure is 
sketched out. 

1. INTRODUCTION 

In a recent work (Quadt and Busch, 1993) a general concept of 
(relative) coarse graining was presented and its meaning investigated in the 
context of quantum mechanics. While this work was concerned with 
developing the relevant notions and discussing various examples, the 
present contribution is devoted to a systematic comparison of different 
types of reduced descriptions and a more detailed elaboration of some 
structural aspects. Coarse graining shall be described as a reduced (statisti- 
cal) description, obtained by the action of a stochastic map. Relative coarse 
graining is introduced as a (pre-)ordering of coarse graining procedures. 
Any observable can be interpreted as inducing a coarse-grained description, 
and relative coarse graining of observables affords a transition to unsharp 
and ultimately to macroscopic observables, both being needed for under- 
standing the quantum-classical connection. 
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2. COARSE GRAINING AS REDUCED DESCRIPTION 

2.1. Probabilistie Framework 

The common structure of classical and quantum theories is that of a 
statistical duality < V, W), where V is the state space and W the space of 
observables of the system under consideration (Ludwig, 1983; Stulpe, 
1988). More explicitly, (V, S) is a base normed Banach space, with the 
convex set S of states being the base of the positive, convex, generating 
cone V + c V. The strictly positive linear charge, or trace functional, which 
assumes the value 1 on S, shall be denoted e. In the context of physical 
applications one may assume the existence of a minimal decomposition for 
z~ V, z = z+ - z _ ,  where z+ ~ V + and minimality is explained with refer- 
ence to the base norm [1" H, via the condition [[zl[ , = e ( z+)+e(z_) .  The 
triple (V, V § e) has been termed the measure cone in an axiomatization 
which is essentially equivalent to that of base normed spaces, but which 
emphasizes measure-theoretic aspects (Busch and Ruch, 1992). 

The space W of observables is taken to be a a-weakly dense, norm 
closed subset of V* from which it is supposed to inherit the structure of an 
order unit space with order unit e. In the case of classical theories we shall 
consider statistical dualities with V being either M(F,  E), the space of 
bounded signed measures on phase space F (Z being some a-algebra of 
subsets), or as a subspace M~(F, E ) -  LI(F,  E, #) of signed measures 
which are absolutely continuous with respect to a positive (a-finite) refer- 
ence measure #. The corresponding spaces of observables may be taken to 
be the space ~ ( F ,  E) of bounded measurable functions in the first case and 
L~ E, #) in the second case. The base norm and charge are identical to 
the total variation norm and the functional m ~ e(m),= m(F), respectively. 
The quantum mechanical statistical duality shall be taken to be V = 
9-~(~(f), the space of self-adjoint trace class operators, and W = LPs(H), 
the space of self-adjoint bounded operators on a complex separable Hilbert 
space ~ .  Base norm and charge are here the trace norm and the trace 
p ~ trip], respectively. More generally, W can be the self-adjoint part of a 
von Neumann algebra of observables and V its space of states. 

T h e  positive part g = [o, e] of the order unit interval is of particular 
physical interest since its elements, the effects, represent the elementary 
events occurring as the outcomes of measurements. Therefore, according to 
the most general and most natural definition, an observable is an effect- 
valued measure on a measurable space (t), ~ ) ,  E: ~ ~ g ,  that is, a 
device that assigns to any state p ~ S  a probability measure on (fL ~ ) ,  
Ep: X ~ Ep(X) = (p, E(X) ). The commonly used notion of observables as 
functions on phase space or as self-adjoint operators is contained in the 
present definition by virtue of the spectral theorem. We conclude that any 
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observable E induces a linear "classical" embedding ~e  of the given state 
space into a space of  probability measures. With this we are facing our 
most prominent example of  a reduced description. 

2.2. Reduced Descriptions 

A reduced (statistical) description of a physical system is obtained by 
means of  the action of a mapping qb: V ~ V' from the system's state space 
V into another state space V'. In general, a mapping of  one set of  objects 
into another one goes along with some loss of information, which may be 
due to the noninjectivity of the map or to some loss of  structural features 
of  the original set. In the present context, the mapping �9 must be a state 
transformation, so that O(S) _ S'. In addition, �9 should respect the convex 
constitution of  states, that is, ~ls should be an affine map. Equivalently, 
must be a linear, positive, charge-preserving map, in short, a stochastic 
map. A linear, charge-preserving map qb is positive if and only if O is a 
contraction with respect to the base norm. Consequently, any stochastic 
map ~b generally leads to decreasing dissimilarity of  state pairs unless �9 is 
an isometry. Interestingly, there are injective stochastic maps which are not 
isometric. The metric properties of  stochastic maps furnish the basis for an 
information-theoretic characterization of  reduced descsriptions (Ruch, 
1992). The appropriate tool is given by the mixing distance from state p to 
state z, d[p/z], which induces a (pre-)ordering of  state pairs characterizing 
the degree of  their dissimilarity: d[p/z] ~-d[p'/~'] holds if and only if 

ll p - , &  [l, _> [l p' for all ~,,8 e 91 + 

This relation is satisfied whenever the pair p ' ,  -c' is obtained from the pair 
p, z by means of the action of  some stochastic map ~: V ~ V'. For  a large 
class of  classical state spaces V = V' the converse statement holds true, 
thus ensuring the existence of  some stochastic map �9 with 
(p', z') = (Op, ~z) whenever d[p/z] ~ d[p'/z']. 2 The common information- 
theoretic characterization of  increasing similarity of  state pairs is given in 
terms of  some (relative) entropy functional. For  example, for a certain class 
of  suitably defined (positive, convex) relative entropy functions f(p, z) of  
pairs of  distributions one can show that f (p , z )2 f (ebp ,  Oz) for any 
stochastic map ~. According to the theorem just quoted, the mixing 
distance affords a sufficient set of  such functionals, thereby providing an 
exhaustive characterization of  the (dis-)similarity phenomenon in question. 

2This theorem, which is due to Ruch and co-workers, is reviewed in (Ruch, 1992); most recent 
extensions of its domain of validity were obtained by Ruch and Stulpe (1993). 
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Each single entropy function can only represent some aspect of the 
phenomenon. 

Two coarse graining procedures O k : V ~  Vk (k = 1, 2) can now be 
compared with each other in the following way. O2 is (relatively) coarser 
than O1, in short O2<O1, whenever for all state pairs p , z ~ S c  V the 
images under �9 2 are more similar to each other than the corresponding 
images under �9 1, that is, d[02p/02z ] -<d[01p/01z ]. This relation will 
certainly hold whenever O2 is operationally coarser than O1, (I)2 [ -  (I) 1 , in the 
sense that there exists a stochastic map W: V1 ~ V2 such that (IT) 2 = k I /o  ( I ) l .  

Rather than concentrating on the quality of the separation of different 
states that can be obtained by different reduced descriptions, one may 
alternatively refer to the mere ability of separating different states, irrespec- 
tive of the resolution. Two stochastic maps Ok: V--* Vk (k = 1, 2) are 
informationally equivalent if Oi- l ({Olp})=Ofl({O2p})  for all s ta tes  
p ~ S c V. If  only an inclusion ~_ holds between these sets, then �9 1 is more 
informative than 02, Oz ~(' O1. In the extreme case where the first set is a 
singleton for any state p, the map O1 is informationally complete. In other 
words, an injective state transformation induces an informationally com- 
plete reduced description. 

The relation O2 ~(' Oi ensures the existence of a linear, positive, 
charge-preserving map qJ from O1(V) onto O2(V) such that 
W(O1p) =O2(p). Due to the subsequent proposition, this map q~ is a 
stochastic map. Conversely, the existence of such a map implies �9 2 -<' O1. 
Obviously one has the implications E ~ ~( and E =~ .<', but the relations 
-< and -<' are generally incomparable, corresponding to quite different 
metric characterizations of the coarse-graining procedures under consider- 
ation. 

Stochastic maps are introduced so as to respect the essential structures 
of base norm spaces, or measure cones, such as positivity, the charges, and 
convex structures. They are structure preserving in a deeper sense described 
in the following proposition. 

Proposition 1. Let 0: V ~ V' be as stochastic map from a base normed 
space (V, S) into a base normed space (V', S'). Then (O(V), O(S)) is a base 
normed space with respect to the inherited norm 

II Oz II .'= inf{ II z + v II11 v ~ Ker(O) } - II [z]Ker(~,)I1' 

[The last expression refers to the quotient norm on V/Ker(O).] One has 

11ozll,-< IlZlll 
�9 is injective if and only if IjOzll~*)= Hzll, for all Z~V. 
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Proof. Using properties of �9 and the base norm space (V', S'), it is 
straightforward to verify that ~(V +) is a proper, generating, convex cone 
in (I)(V), with convex base (I)(S). The charge functional e' associated with 
S' is also strictly positive with respect to (I)(V+). The map (I) induces a 
canonical bijection between the quotient space V/Ker((I)) and (I)(V), so that 
the quotient norm of the former is naturally inherited in the latter space. It 
remains to show that the norm 1[. 1[~0)is the Minkowski functional of the 
set c o n v ( ~ ( S ) w - ~ ( S ) ) ,  that is, 

[Iz 1[~') = inf{2 > 01ze2 conv(r w - r  

Let e > 0 .  There exists weqb-l({z))  such that 0 <  []w[I,-][zJ]~e~ 
Furthermore, there exist 2 > 0 ,  x, y eS ,  and ~e[0,1] such that w =  
2 [ ~ x -  ( 1 -  ~)y] and 0-< 2 -[Iw[ll <e/2.  It follows that 

z = ~w = 2[~r - (1 - a)dpy] e2 conv(~b(S) w -- (I)(S)) 

and 0 -< 2 -  [!zlJ~ *) < e. This completes the proof. 

3. TYPES OF REDUCED DESCRIPTIONS 

For a coarse-graining map ~: V ~ V' the following cases are typically 
of interest in physical considerations: 

(~) V= M~(F, Z), V' = g ( ~ ,  ~ ) .  
(fl) V = ~(~), V' = M(f~, if). 
(7) g = Mu (r, E), V' = ~ (~). 
(6) v = ~ ( ~ ) ,  v" = ~ ( ~ ) .  

The case (~) comprises coarse graining of classical theories. In the context 
of quantum mechanics it will be employed to perform procedures of 
relative coarse graining of observables. As we have seen above, any 
observable E in the sense of an effect=valued measure induces a classical 
embedding (1) E, thus an instance of (fl). Conversely, any stochastic map 
(1): ~"~(,,~)-~M(~, ~ )  gives rise to an observable E = Er on ((1), ,~) such 
that (1)=(I)~. The observable E is determined via the dual map 
~*: ~ ( fL  J )  --+~G ,~f) as follows: Er = ~*(~x) for XE~@-. Classical 
embeddings are extensively investigated in Bugajski et al. (1993) and Singer 
and Stulpe (1992). 

The most familiar examples of classical coarse graining are phase 
space partitionings and convolutions. Letting F = U Fi be a disjoint parti- 
tioning, define (1)part on Mr(F,  Y.) such that 

r ar tm(x) = Z / 2 ( X ' ~  Fi)m(r , , ) ,  X e Z  
i 
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The induced (classical) effect-valued measure, 

#(X c~ F;) 
X'l--~Epart(X" ) - , - -  (I)P art~X = E ~lFi 

~ ( F i )  

is an unsharp observable in the sense that the effects are no projections 
(characteristic functions). However, in this case an equivalent description 
in terms of an ordinary observable is obtained in view of the one-to-one 
correspondence with the measures @partm and the discrete measures 
i~-~md(i),=m(F~). Thus, one may consider instead the stochastic map 
~part which sends the measures m to their discrete images m d. Noting the 
dual relation (m ,~r , )=(md ,  i), the associated observable is now the 
discrete projection-valued measure i b-~ E~ .'= Zri. 

If the phase space F is endowed with the structure of an additive 
group, then one can perform convolutions. Let # be the Haar measure on 
F, f a confidence distribution. The following is a stochastic map on 
Mz(F, Z) "~ LI(F, Z, #): 

p ~._.~tpfp.=f, p 

These operations can be applied to produce relations of coarse grain- 
ings. The orderings < ,  -( ', and F- defined above for coarse-graining 
procedures can be transferred to pairs of observables via their associated 
classical embeddings. As an illustration we consider coarse grainings of 
phase space observables 

a: :8(!R2)~d~(Yf), A~-~a(a)'=faTqpdqdP2rdi 

[Here "- + Tqp . -  UqpToUqp, Toe ~J~(~g~)~, and Uqp ,=exp{(i/h)[pa - qPl} de- 
notes a unitary irreducible (projective) representation (on ~ff) of the group 
of translations on phase space.] The associated classical embedding is 

@a: P ~-~Pp, Pp(q,P) = tr[pTqp](27~h) -1 

If a is an informationaUy complete observable, then (I) a provides a phase 
space representation of quantum mechanics, which has been discussed by 
Ali and Prugove~ki (1977), Singer and Stulpe (1992), and Schroeck (1982). 
[For an extensive account of quantum mechanics on phase space, see the 
monograph of Prugove~ki (1986).] The condition for informational com- 
pleteness is known to be tr[UqpTo] ~ 0 (almost everywhere). 

Let f be a confidence function on phase space. The stochastic map 
~r  ~ qb =,qb : p ~-~pp , f  is another classical (phase space) embedding of 
the quantum mechanical state space, the associated observable af being 

ay: T~paq dP2nh 



Concepts of Coarse Graining in Quantum Mechanics 2267  

This is again a phase space observable in view of the relation 

Tfp = ~ Tq,p,f(q q .p '  - p) dq" dp' = 'f + ," --  Uqp Too U qp 
3~ 2 

Since qb,jis a composition of q% with another stochastic operator Wf, we have 
the relation ~,j  _E q~, or aft-a.  The observable af is coarser than a. By 
choosing f with large variances one obtains macroscopically unsharp phase 
space observables for which it is possible to construct models of quasiclassical 
measurements (Quadt and Busch, 1993). Note that the condition ofinforrna- 
tional completeness will not be lost if f is taken to be a Gaussian distribution. 

The stochastic maps of type (7) appear to be, in the first instance, 
reduced descriptions of classical theories within a quantum mechanical 
frame. But a particular choice of the measurable space (f~, o ~ )  yields an 
interesting representation of the quantum mechanical statistical duality. In 
fact, let ~ be the set of extremals of the set of states ~ (.r + endowed with 
the trace norm topology and the ensuing Borel structure ~-. Then the map 
~ M : m  ~ ~ ,p  dm (Misra, 1974) is a stochastic map, and for any A e s  
one has 

tr[@Mm A] = tr[A .p] dm = (m, @ * A )  

The dual map qD* : A ~ {tr[A �9 p] } is an injective embedding of ~, (Jr') into 
the space of continuous functions on ~. Clearly, q ) * ~ ( ~ )  does not 
separate M(fL ~) ,  so that many probability measures m are" associated 
with a given mixed state p, thus representing the nonunique decomposabil- 
ity of nonpure quantum states. Generalizing this method, Bugajski (1991) 
presented an interesting framework for nonlinear extensions of quantum 
mechanics toward classical theories. 

Finally, an example of type (6) coarse graining is given by the analog 
of phase space partitioning, which has often been used for the description 
of macroscopic observables. Let I = ~k Pk be a partitioning of the unit into 
finite-rank projections (tr[Pk] = nk), and define the stochastic map 

1 q �9 
(])part" P ~ ~ tr[pPk] - -  P k  

k nk  

q mutually commutative, this Since the state operators in the range (IDpart a r e  

map can be equivalently interpreted as a classical embedding p ~ pp(k) ,= 
tr[pPk]. 

Such an alternative interpretation is no longer possible in the case of 
a Lfiders measurement operation, 
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which describes the state change due to an ideal measurement. (I) L coincides 
with the previous map exactly, when the projections Pk are of rank one. 

More generally, one may consider any completely positive stochastic 
map q~: p ~ ~p.  Any such map induces, by virtue of its dual ~*, a map on 
the set of observables, E ~ qb* o E := F. In a measurement context these 
maps can be interpreted as follows. If  a system is prepared in state p, it 
may suffer some external disturbance (noise), which changes its state into 
�9 p. A subsequent measurement of E then is equivalent to measuring F 
directly on the state p, since tr[p �9 F(X)] = t r [~p .  E(X)]. Using Naimark's 
extension theorem, it is not hard to show that any effect-valued measure F 
can be obtained in this way from some projection-valued measure E, so 
that in any case a noise interpretation is possible in principle (Busch et al., 
1993). In some instances the maps 4"  are seen to admit an interpretation 
in the sense of relative coarse graining (Quadt and Busch, 1993). 

To conclude, we have surveyed a new conception of coarse graining, 
providing a unified formulation of various kinds of reduced descriptions of 
physical systems. The great flexibility achieved is due to the fact that the 
full set of observables is taken into account, including both ordinary 
(sharp) observables (spectral measures) as well as genuinely unsharp ob- 
servables. The latter are exemplified by means of phase space observables 
which represent joint position and momentum measurements. The marginal 
observables are known to be obtained from ordinary position and momen- 
tum observables, to be obtained from ordinary position and momentum via 
convolution, hence relative coarse graining. Thus, classical features such as 
coexistence can be restored for noncommuting observables by performing 
suitable coarse grainings, which necessarily lead to unsharp observables. 
Moreover, macroscopic phase space observables display operational fea- 
tures which are characteristic of quasiclassical measurement situations, and 
these features emerge by themselves with increasing intrinsic inaccuracies, 
without any additional ad hoc assumptions. In this respect we expect that 
coarse graining as described here may ultimately lead to a representation of 
macroscopic, quasiclassical observables which is superior to the traditional 
description in terms of the quantum partitioning maps cI)~art (cf. also 
Ludwig, 1987). This view is reinforced by the fact that coarse graining 
yields a vast variety of classical representations of quantum mechanics, 
thereby providing a promising framework for further investigations into 
the quantum-classical connections. 
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